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Abstract
Using methods of Kersten et al (2004 J. Geom. Phys. 50 273–302) and
Krasil′shchik and Kersten (2000 Symmetries and Recursion Operators for
Classical and Supersymmetric Differential Equations (Dordrecht: Kluwer)),
we accomplish an extensive study of the N = 1 supersymmetric Korteweg–
de Vries (KdV) equation. The results include a description of local and
nonlocal Hamiltonian and symplectic structures, five hierarchies of symmetries,
the corresponding hierarchies of conservation laws, recursion operators for
symmetries and generating functions of conservation laws. We stress that the
main point of the paper is not just the results on super-KdV equation itself,
but merely exposition of the efficiency of the geometrical approach and of the
computational algorithms based on it.

PACS numbers: 02.30.Ik, 11.30.−j
Mathematics Subject Classification: 37K05, 35Q53

Introduction

There exist a number of superextensions of the classical KdV equation

ut = −uxxx + 6uux

(see [15] and the references therein). One of them, the so-called N = 1 supersymmetric
extension, is

ut = −uxxx + 6uux + ϕxxϕ ϕt = −ϕxxx + 3uϕx + 3uxϕ (1)
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where ϕ is an odd (fermionic) variable [17]. To deal with this system, it is convenient to
introduce a new independent odd variable θ such that D2

θ = Dx , where

Dθ = ∂θ + θDx

(here Dx denotes the total derivative operator; see below) and a new odd function

� = ϕ + θu.

Then (1) will acquire the form

�t = −�xxx + 3Dθ(�)�x + 3Dθ(�x)�. (2)

This equation is linear in θ and reduces to (1) if we equal to each other the corresponding
coefficients at the left- and right-hand sides. System (1) (or equation (2)) was studied before
(see, e.g., [13]), and a number of results related to its integrability were obtained. The
aim of our paper is twofold: (1) to represent the known results in a more convenient form
(at least, from our point of view); (2) to demonstrate the efficiency of new methods of analysis
of integrable systems described in [7, 8] and based on a general geometric approach to nonlinear
PDE [2, 10]. Actually, description of these methods and their highly algorithmical nature
(and, to a less extent, of the results on the super-KdV equation themselves) is the main goal
of the paper. For traditional approach to the Hamiltonian formalism in integrable systems, we
refer the reader to [3, 12, 18, 20]; an extensive exposition of the theory for superintegrable
systems can be found in [11].

This paper is organized as follows. In section 1, we present the essential definitions and
results needed for applications paying main attention to the computational aspects rather than
to theoretical ones. All the proofs can be found in [2, 7, 8, 10]. In section 2, the results for
the N = 1 supersymmetric KdV equation are described. Finally, in the last section we briefly
discuss the results and perspectives.

1. Description of the computational scheme

Here we deal with evolution systems E of the form

vt = F(y, t, v1, . . . , vk) (3)

where both the unknown variables v = (v1, . . . , vm) and the right-hand side F =
(F 1, . . . , Fm) are vector-functions and vi = ∂iv/∂yi, y and t being the independent variables.

Remark 1. In applications, some of the variables vj , as well as y, may be odd. In particular,
in equation (2) θ and � are odd and x is even. Nevertheless, for the sake of simplicity, we
expose the general theory for purely even equations. Necessary corrections are needed for the
super case and the reader will find them in subsection 1.10.

Two basic operators related to (3),

Dy = ∂

∂y
+

∑
i,j

v
j

i+1

∂

∂v
j

i

Dt = ∂

∂t
+

∑
i,j

Di
y(F

j )
∂

∂v
j

i

are called the total derivatives.

Remark 2. Note that the above expressions for total derivatives contain infinite number of
terms. To make the action of these operators (as well as of similar operators introduced below)
well defined, we introduce the space F(E) of functions smoothly depending on y, t and a
finite number of variables v

j

i , and assume Dy and Dt to act in this space. Similarly, we shall
consider the spaces Fm(E) of vector-functions of length m that depend on y, t and v

j

i in the
same way.
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1.1. Symmetries

A symmetry of equation (3) is a vector field

S =
∑
i,j

S
j

i

∂

∂v
j

i

S
j

i ∈ F(E)

such that

[S,Dy] = [S,Dt ] = 0.

Any symmetry is of the form

�f =
∑
i,j

Di
y(f

j )
∂

∂v
j

i

(4)

where the vector-function f = (f 1, . . . , f m) ∈ Fm(E) satisfies the system of equations

Dt(f
l) =

∑
i,j

∂F l

∂v
j

i

Di
y(f

j ) l = 1, . . . , m. (5)

The operator at the right-hand side of (5) is called the linearization of F and is denoted by �F .
Thus, equation (5) acquires the form

Dt(f ) = �F (f ). (6)

There exists a one-to-one correspondence between symmetries (4) and the corresponding
functions f ∈ Fm(E); hence, we shall identify symmetries with such functions and use the
term ‘symmetry’ for any function that satisfies (6).

1.2. Conservation laws and generating functions

A conservation law of system (3) is a pair � = (Y, T ), Y, T ∈ F(E), such that

Dt(Y ) = Dy(T ). (7)

The function Y is called the density of �. A conservation law is called trivial if
Y = Dy(P ), T = Dt(P ) for some function P ∈ F(E).

To any conservation law there corresponds its generating function defined by

g� = δY

δv
=

(
δY

δv1
, . . . ,

δY

δvm

)
where

δ

δvj
=

∑
i�0

(−Dy)
i ◦ ∂

∂v
j

i

is the variational derivative with respect to vj . Generating functions of conservation laws
satisfy the system of equations

Dt(g) = −�∗
F (g) (8)

or

Dt(g
l) = −

∑
i,j

(−Dy)
i

(
∂F j

∂vl
i

gj

)
l = 1, . . . , m (9)

where �∗
F is adjoint to the operator �F .

Any conservation law is uniquely determined by its generating function and, in particular,
� is trivial if and only if g� = 0. We stress that equation (9) may possess solutions that do
not correspond to any conservation law of (3).

Remark 3. Generating functions are also called cosymmetries [1] or conserved
covariants [4].
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1.3. Nonlocal variables

Let us introduce a set of variables w1, . . . , wj , . . . satisfying the equations

wj
y = Aj

(
y, t, . . . , vα

i , . . . , wβ, . . .
)

w
j
t = Bj

(
y, t, . . . , vα

i , . . . , wβ, . . .
)

(10)

that are compatible modulo equation (3), where Aj , Bj are some smooth functions depending
on a finite number of arguments. Consider the operators

D̃y = Dy +
∑

j

Aj ∂

∂wj
D̃t = Dt +

∑
j

Bj ∂

∂wj
.

Due to compatibility conditions, one has

[D̃y, D̃t ] = 0 (11)

modulo (3). Variables wj are called nonlocal.
Using the operators D̃y, D̃t instead of Dy and Dt in formulae (5), (7) and (9), we

can introduce the notions of nonlocal symmetries, nonlocal conservation laws and nonlocal
generating functions depending on the new variables wj . We shall denote the spaces of such
symmetries and generating functions by sym(E) and gf(E), respectively.

Remark 4. An invariant geometric way to introduce nonlocal variables is based on the notion
of covering, see [2, 8–10].

1.4. The �- and �∗-extensions

There are two canonical ways to extend the initial system (3). The first one is related to the
operator �F and is called the �-extension. Namely, let us introduce the nonlocal variables ω

j

i

(we shall also denote ω
j

0 by ωj ), j = 1, . . . , m, i = 0, 1, . . . , satisfying the relations(
ω

j

i

)
y

= ω
j

i+1

(
ω

j

i

)
t
= D̃i

y

(∑
s,l

∂F j

∂vl
s

ωl
s

)
.

Clearly, these equations are consistent modulo (3) and are the consequences of the following
ones:

ω
j
t =

∑
i,l

∂F j

∂vl
i

ωl
i . (12)

In a similar way, we construct the �∗-extension: the nonlocal variables are p
j

i (pj

0 will
also be denoted by pj ), and the defining relations are(

p
j

i

)
y

= p
j

i+1

(
p

j

i

)
t
= −D̃i

y

(∑
s,l

(−D̃y)
s

(
∂F l

∂v
j
s

pl

))
that reduce to the equations

p
j
t = −

∑
s,l

(−D̃y)
s

(
∂F l

∂v
j
s

pl

)
(13)

and their differential consequences.

Remark 5. The parities of the variables ωj and pj are opposite to that of vj : if vj is even,
then ωj and pj are odd and vice versa.

If the initial equation E was extended by nonlocal variables wj , we can associate with
these variables, in a canonical way, the corresponding ω and p whose ‘behaviour’ is governed
by linearization or, respectively, adjoint linearization of equations (10) in the corresponding
nonlocal setting.
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1.4.1. Associating operators to functions on the �- and �∗-extensions. Let Fm(E) be the
space of vector-valued functions of length m (see remark 2). Consider the case when E is not
extended by nonlocal variables first. Let a = (a1, . . . , am), ai = ∑

j l a
ij

l ω
j

l , a
ij

l ∈ F(E), be
a linear in ω vector function. Then we put into correspondence to this function a differential
operator �a = ∥∥�

ij
a

∥∥:Fm(E) → Fm(E), where

�ij
a =

∑
l

a
ij

l Dl
y i, j = 1, . . . , m.

If F(E) contains nonlocal variables, the situation becomes more complicated. We
shall consider here the simplest case when the functions Aj in (10) are independent of
ωβ . Let ω̄β be a variable in the �-extension associated with the nonlocal variable wβ and
b = (b1, . . . , bm), bi = ∑

β biβω̄β , be a linear in ω̄ vector-function. Then the corresponding

operator �b = ∥∥�
ij

b

∥∥:Fm(E) → Fm(E) is of the form

�
ij

b =
∑

α

biαD−1
y ◦

∑
l

∂Aα

∂v
j

l

Dl
y. (14)

For the �∗-extension the construction is completely similar.
Below we shall use the notation Lm(�E) and Lm(�∗

E) for the spaces of vector functions
linear in ω, ω̄ and p, p̄, respectively.

1.5. Recursion operators for symmetries

Let R ∈ Lm(�E) be a function that satisfies the equation

D̃t (R) = �̃F (R).

Then the corresponding operator �R maps sym(E) to sym(E) and thus is a recursion operator
for (nonlocal) symmetries of E .

Remark 6. Here and below �̃F denotes the linearization operator with the total derivative Dy

replaced by its counterpart D̃y for the �- or �∗-covering, and �̃∗
F stands for the adjoint of �̃F .

1.6. Recursion operators for generating functions

Let L ∈ Lm(�∗
E) be a function that satisfies the equation

D̃t (L) = −�̃∗
F (L).

Then the corresponding operator �L maps gf(E) to gf(E) and thus is a recursion operator for
(nonlocal) generating functions of E (or adjoint recursion operator [1]).

1.7. Hamiltonian structures

Let K ∈ Lm(�∗
E) be a function that satisfies the equation

D̃t (K) = �̃F (K).

Then the corresponding operator �K maps gf(E) to sym(E). We call such maps pre-
Hamiltonian structures (they are also known as Noether operators [4]). In order to �K be a
true Hamiltonian structure, it has to satisfy two conditions: skew-symmetry (�∗

K = −�K)

and the Jacobi identity for the corresponding Poisson bracket (that amounts to [[�K,�K ]] = 0,
where [[·, ·]] is the variational Schouten bracket, see [5, 7]). Both of these conditions are easily
checked in terms of the function K.
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Namely, if K = ∥∥∑
j l a

ij

l p
j

l

∥∥ then we consider the function WK = ∑
ij l a

ij

l p
j

l p
i and in

terms of WK , the first condition reads∑
i

δWK

δpi
pi = −2WK (15)

while the second one is(
δ

δv
,

δ

δp

) ∑
i

(
δWK

δvi

δWK

δpi

)
= 0 (16)

(δ/δv, δ/δp) = (δ/δv1, . . . , δ/δvm, δ/δp1, . . . , δ/δpm). Note also that the compatibility
condition for two Hamiltonian structures K and K ′ amounts to(

δ

δv
,

δ

δp

) ∑
i

(
δWK

δvi

δWK ′

δpi
+

δWK ′

δvi

δWK

δpi

)
= 0. (17)

The equation E itself is in the Hamiltonian form if it possesses a Hamiltonian structure K
and may be presented as

vt = �K

δY

δv
(18)

for some function Y.

1.8. Symplectic structures

Let J ∈ Lm(�E) be a function that satisfies the equation

D̃t (J ) = −�̃∗
F (J ).

Then the corresponding operator �J , which maps sym(E) to gf(E), is called an inverse
Noether operator [4] for E . An operator �J : sym(E) → gf(E), not necessary being an inverse
Noether operator, is called symplectic (or a symplectic structure) cf e.g., [4, 14], if it enjoys
the following properties. Let J = ∥∥∑

j l b
ij

l ω
j

l

∥∥. Similar to subsection 1.7, we consider the

function WJ = ∑
ij l b

ij

l ω
j

l ω
i and impose the conditions∑

i

δWJ

δωi
ωi = −2WJ (19)

i.e. the operator �J is skew-adjoint, and(
δ

δv
,

δ

δω

) ∑
i

δWJ

δvi
ωi = 0 (20)

that means that the ‘form’ WJ is closed. Thus, in our context, the term ‘symplectic structure’
means the same as in classical mechanics, cf [14].

1.9. Canonical representation

As it will be seen below, all the operators constructed in our study are presented in the form∑
α�0

cα
ijD

α
y +

∑
β

d
β

j D−1
y ◦ e

β

i

where
∥∥cα

ij

∥∥ is an m × m-matrix,
∥∥d

β

j

∥∥ is an m × l-matrix and
∥∥e

β

i

∥∥ is an l × m-matrix for
some l > 0 (matrix-valued functions, to be more precise). In the table it is shown how the
matrices d and e look for different types of operators.
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Type of operator Lines of matrix d Columns of matrix e

Recursions for symmetries Symmetry Generating function
Recursions for generating function Generating function Symmetry
Hamiltonian structures Symmetry Symmetry
Symplectic structures Generating function Generating function

1.10. Super case

We shall now assume that all objects under consideration belong to the supersetting, i.e. may
be either even or odd, which means that they obey the rule

AB = (−1)ABBA.

Here and below, symbols used at the exponents of (−1) stand for the corresponding parity.
Generalization of the above exposed theory to the super case is carried out along the lines of
[10, 19].

Then the basic formulae to be used in the calculus described above are

(1) For evolutionary derivations

�ϕ =
∑
ij

(−1)ϕv
j

i Di
y(ϕ

j )
∂

∂v
j

i

(naturally, the parity of v
j

i equals that of vj plus parity of y times i).
(2) For the linearization one has �f (ϕ) = (−1)f ϕ�ϕ(f ) that amounts to

(�f )βα =
∑

i

(−1)(f
α+1)v

β

i
∂f α

∂v
β

i

Di
y.

(3) For the operator adjoint to � = ∑
i aiD

i
y one has

�∗ =
∑

i

(−1)i+iaiy+ i(i−1)

2 yDi
y ◦ ai.

2. Main results for the N = 1 supersymmetric KdV equation

Here we apply the theory described above to equation (2)

�t = −�xxx + 3Dθ(�)�x + 3Dθ(�x)�.

We use the notation

�k for
∂2k�

∂θ2k
= ∂k�

∂xk

and

�k 1
2

for D2k+1
θ (�) = Dθ

(
∂k�

∂xk

)
.

The functions �k are odd while �k 1
2

are even; the function � = �0 itself being odd.

Gradings. We assign the following gradings [·] to the variables on our equation:

[θ ] = − 1
2 [x] = −1 [t] = −3 [�] = 3

2

respectively, we have

[�k] = (2k + 3)/2
[
�k 1

2

] = k + 2.

With these gradings, equation (2) becomes homogeneous (of grading 9/2) and all constructions
below can be considered to be homogeneous as well.
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2.1. Nonlocal functions

Here we extend the equation E by four groups of nonlocal variables. We present here their
θ -components only; the x- and t-components are given in [6] (they are found from compatibility
conditions (11)).

2.1.1. Group 1. This group includes the even variables q1, q3, q5, defined by

(q1)θ = �0

(q3)θ = �0� 1
2

(q5)θ = � 1
2

(−�2 + 2�0� 1
2

)/
2.

Gradings: [q1] = 1, [q3] = 3, [q5] = 5.

2.1.2. Group 2. This group includes the odd variables Q 1
2
, Q 5

2
,Q 9

2
defined by(

Q 1
2

)
θ

= q1(
Q 5

2

)
θ

= q3
1 − 6q3(

Q 9
2

)
θ

= −60�0�1q1 + q5
1 − 60q2

1q3 + 240q5.

Gradings:
[
Q 1

2

] = 1
2 ,

[
Q 5

2

] = 5
2 ,

[
Q 9

2

] = 9
2 .

2.1.3. Group 3. This group includes the odd variables Q 3
2
, Q 7

2
,Q 11

2
defined by(

Q 3
2

)
θ

= �0Q 1
2(

Q 7
2

)
θ

= (
12�2Q 1

2
+ 18�1Q 1

2
q1 + �0Q 5

2

)/
3(

Q 11
2

)
θ

= (
360�4Q 1

2
+ 5280�3Q 1

2
q1 − 760�2Q 5

2
+ 4680�2Q 1

2
� 1

2

+ 1200�2Q 1
2
q2

1 + 60�1Q 5
2
q1 + �0Q 9

2

)/
60.

Gradings:
[
Q 3

2

] = 3
2 ,

[
Q 7

2

] = 7
2 ,

[
Q 11

2

] = 11
2 .

2.1.4. Group 4. This group includes the even variables q̄1, q̄3, q̄5 defined by

(q̄1)θ = Q 3
2

(q̄3)θ = −(
Q 7

2
+ Q 3

2
q2

1

)
(q̄5)θ = (

12Q 11
2

+ 42Q 7
2
� 1

2
+ 6Q 7

2
q2

1 + 12Q 3
2
�1 1

2
q1 + Q 3

2
q4

1 − 24Q 3
2
q1q3

)/
3.

Gradings: [q̄1] = 1, [q̄3] = 3, [q̄5] = 5.

Remark 7. The last three variables are not used directly in the subsequent computations, but
clarify the nonlocal picture and enter in the expressions for the higher terms of hierarchies of
symmetries and generating functions.

2.2. Seed symmetries

Solving equation (5), which in our case is of the form

D̃t (f ) = −D̃6
θ (f ) + 3D̃θ (f )�1 + 3� 1

2
D̃2

θ (f ) + 3D̃3
θ (f )� + 3�1 1

2
f

where D̃θ = ∂θ + θD̃x , while D̃x and D̃t are the total derivative operators extended to the
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nonlocal setting (see subsection 2.1), we found a number of solutions that serve as seed
symmetries for constructing infinite hierarchies and are used to construct nonlocal vectors
(see subsection 2.4).

These symmetries are

The Yk series.

Y1 = �1

Y3 = �3 − 3�1� 1
2
− 3�0�1 1

2

Y5 = �5 − 5�3� 1
2
− 10�2�1 1

2
+ 10�1�

2
1
2
− 10�1�2 1

2
+ 20�0� 1

2
�1 1

2
− 5�0�3 1

2
.

The Yk 1
2

series.

Y 3
2

= −2�1Q 1
2
− � 1

2
q1 + �1 1

2

Y 7
2

= −12�3Q 1
2
− 2�1Q 5

2
+ 36�1Q 1

2
� 1

2
+ 36�0Q 1

2
�1 1

2
+ 12�0�2 − 6�0�1q1

+ 12�2
1
2
q1 − 36� 1

2
�1 1

2
− � 1

2
q3

1 + 6� 1
2
q3 + 3�1 1

2
q2

1 − 6�2 1
2
q1 + 6�3 1

2

Y 11
2

= 240�5Q 1
2

+ 40�3Q 5
2
− 1200�3Q 1

2
� 1

2
− 2400�2Q 1

2
�1 1

2

+ 2�1Q 9
2
− 120�1Q 5

2
� 1

2
+ 2400�1Q 1

2
�2

1
2
− 2400�1Q 1

2
�2 1

2
− 600�1�3

+ 240�1�2q1 − 120�0Q 5
2
�1 1

2
+ 4800�0Q 1

2
� 1

2
�1 1

2
− 1200�0Q 1

2
�3 1

2

− 480�0�4 + 360�0�3q1 + 1920�0�2� 1
2
− 120�0�2q

2
1 − 720�0�1� 1

2
q1

+ 1680�0�1�1 1
2

+ 20�0�1q
3
1 − 120�0�1q3 + 660�3

1
2
q1 − 3540�2

1
2
�1 1

2

− 40�2
1
2
q3

1 + 240�2
1
2
q3 + 360� 1

2
�1 1

2
q2

1 − 960� 1
2
�2 1

2
q1 + 1200� 1

2
�3 1

2

+ � 1
2
q5

1 − 60� 1
2
q2

1q3 + 240� 1
2
q5 − 720�2

1 1
2
q1 + 2400�1 1

2
�2 1

2
− 5�1 1

2
q4

1

+ 120�1 1
2
q1q3 + 20�2 1

2
q3

1 − 120�2 1
2
q3 − 60�3 1

2
q2

1 + 120�4 1
2
q1 − 120�5 1

2
.

The Zk series.

Z1 = Q 1
2
� 1

2
+ θ

(−2�1Q 1
2
− � 1

2
q1 + �1 1

2

)
Z3 = (

3Q 3
2
� 1

2
q1 − 3Q 3

2
�1 1

2
+ Q 5

2
� 1

2
− 12Q 1

2
�2

1
2
− 3Q 1

2
�1 1

2
q1 + 6Q 1

2
�2 1

2

+ 6�1Q 1
2
Q 3

2
+ 6�0�1Q 1

2
+ θ

(−12�3Q 1
2
− 2�1Q 5

2
+ 36�1Q 1

2
� 1

2

+ 36�0Q 1
2
�1 1

2
+ 12�0�2 − 6�0�1q1 + 12�2

1
2
q1 − 36� 1

2
�1 1

2

−� 1
2
q3

1 + 6� 1
2
q3 + 3�1 1

2
q2

1 − 6�2 1
2
q1 + 6�3 1

2

)/
3

Z5 = (−15Q 7
2
� 1

2
q1 + 15Q 7

2
�1 1

2
+ 120Q 3

2
�2

1
2
q1 − 360Q 3

2
� 1

2
�1 1

2

− 10Q 3
2
� 1

2
q3

1 + 60Q 3
2
� 1

2
q3 + 30Q 3

2
�1 1

2
q2

1 − 60Q 3
2
�2 1

2
q1 + 60Q 3

2
�3 1

2

−Q 9
2
� 1

2
+ 40Q 5

2
�2

1
2
− 5Q 5

2
� 1

2
q2

1 + 15Q 5
2
�1 1

2
q1 − 20Q 5

2
�2 1

2
− 660Q 1

2
�3

1
2

+ 90Q 1
2
�2

1
2
q2

1 − 390Q 1
2
� 1

2
�1 1

2
q1 + 960Q 1

2
� 1

2
�2 1

2
+ 5Q 1

2
� 1

2
q4

1

− 30Q 1
2
� 1

2
q1q3 + 660Q 1

2
�2

1 1
2
− 10Q 1

2
�1 1

2
q3

1 − 30Q 1
2
�1 1

2
q3 + 60Q 1

2
�3 1

2
q1

− 120Q 1
2
�4 1

2
+ 12�5 − 120�3Q 1

2
Q 3

2
− 60�3� 1

2
− 120�2�1 1

2

− 20�1Q 5
2
Q 3

2
− 30�1Q 1

2
Q 7

2
+ 360�1Q 1

2
Q 3

2
� 1

2
− 10�1Q 1

2
Q 5

2
q1

− 240�1�2Q 1
2
− 60�1� 1

2
q2

1 + 60�1�1 1
2
q1 − 120�1�2 1

2
+ 360�0Q 1

2
Q 3

2
�1 1

2



5012 P Kersten et al

− 360�0�3Q 1
2

+ 120�0�2Q 3
2

+ 120�0�2Q 1
2
q1 + 60�0�1Q 3

2
q1

− 20�0�1Q 5
2

+ 720�0�1Q 1
2
� 1

2
− 180�0�1Q 1

2
q2

1 + 300�0� 1
2
�1 1

2

− 90�0� 1
2
q3

1 + 90�0�1 1
2
q2

1 − 60�0�3 1
2

+ θ
(
240�5Q 1

2
+ 40�3Q 5

2

− 1200�3Q 1
2
� 1

2
− 2400�2Q 1

2
�1 1

2
+ 2�1Q 9

2
− 120�1Q 5

2
� 1

2

+ 2400�1Q 1
2
�2

1
2
− 2400�1Q 1

2
�2 1

2
− 600�1�3 + 240�1�2q1

− 120�0Q 5
2
�1 1

2
+ 4800�0Q 1

2
� 1

2
�1 1

2
− 1200�0Q 1

2
�3 1

2
− 480�0�4

+ 360�0�3q1 + 1920�0�2� 1
2
− 120�0�2q

2
1 − 720�0�1� 1

2
q1

+ 1680�0�1�1 1
2

+ 20�0�1q
3
1 − 120�0�1q3 + 660�3

1
2
q1 − 3540�2

1
2
�1 1

2

− 40�2
1
2
q3

1 + 240�2
1
2
q3 + 360� 1

2
�1 1

2
q2

1 − 960� 1
2
�2 1

2
q1 + 1200� 1

2
�3 1

2

+ � 1
2
q5

1 − 60� 1
2
q2

1q3 + 240� 1
2
q5 − 720�2

1 1
2
q1 + 2400�1 1

2
�2 1

2

− 5�1 1
2
q4

1 + 120�1 1
2
q1q3 + 20�2 1

2
q3

1 − 120�2 1
2
q3 − 60�3 1

2
q2

1 + 120�4 1
2
q1

− 120�5 1
2

))/
5.

The Zk 1
2

series.

Z 1
2

= −2θ�1 + � 1
2

Z 5
2

= −2�1Q 3
2

+ �1Q 1
2
q1 + 2�0�1 − 4�2

1
2

+ � 1
2
q2

1 − 2�1 1
2
q1 + 2�2 1

2

+ θ
(−4�3 + 12�1� 1

2
+ 12�0�1 1

2

)
Z 9

2
= −24�3Q 3

2
+ 24�3Q 1

2
q1 − 6�1Q 7

2
+ 72�1Q 3

2
� 1

2
+ 2�1Q 5

2
q1

− 36�1Q 1
2
� 1

2
q1 + 24�1Q 1

2
�1 1

2
− 36�1Q 1

2
q3 + 48�1�2 + 72�0Q 3

2
�1 1

2

− 72�0Q 1
2
�1 1

2
q1 + 72�0�3 − 48�0�2q1 − 144�0�1� 1

2
+ 48�0�1q

2
1

+ θ
(−48�5 + 240�3� 1

2
+ 480�2�1 1

2
− 480�1�

2
1
2

+ 480�1�2 1
2

− 960�0� 1
2
�1 1

2
+ 240�0�3 1

2

)
+ 132�3

1
2
− 24�2

1
2
q2

1 + 144� 1
2
�1 1

2
q1

− 192� 1
2
�2 1

2
+ � 1

2
q4

1 − 24� 1
2
q1q3 − 144�2

1 1
2
− 4�1 1

2
q3

1 + 24�1 1
2
q3

+ 12�2 1
2
q2

1 − 24�3 1
2
q1 + 24�4 1

2
.

Gradings. There are two points of view on symmetries: as on functions and as on vector fields
�f (see subsection 1.1). For functions, we have

[Y1] = 5
2 [Y3] = 9

2 [Y5] = 13
2 odd[

Y 3
2

] = 3
[
Y 7

2

] = 5
[
Y 11

2

] = 7 even

[Z1] = 5
2 [Z3] = 7

2 [Z5] = 13
2 odd[

Z 1
2

] = 2
[
Z 5

2

] = 4
[
Z 9

2

] = 6 even.

For vector fields we have
[�Y1 ] = 1

[
�Y3

] = 3
[
�Y5

] = 5 even[
�Y 3

2

] = 3
2

[
�Y 7

2

] = 7
2

[
�Y 11

2

] = 11
2 odd[

�Z1

] = 1
[
�Z3

] = 3
[
�Z5

] = 5 even[
�Z 1

2

] = 1
2

[
�Z 5

2

] = 5
2

[
�Z 9

2

] = 9
2 odd.
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Note also that the symmetries Yα do not depend on θ , while Zα are linear functions with
respect to θ .

2.3. Seed generating functions

Solving equation (5), which in our case is of the form

D̃t (f ) = −D̃6
θ (f ) + 6� 1

2
D̃2

θ (f ) − 3�0D̃
3
θ (f )

we found a number of solutions that serve as seed generating functions for constructing infinite
hierarchies and used to construct nonlocal forms (see subsection 2.5). These generating
functions are

The Fk series.

F0 = 1

F2 = � 1
2

F4 = (−2�0�1 + 3�2
1
2
− �2 1

2

)/
3.

The Fk 1
2

series.

F 1
2

= Q 1
2

F 5
2

= (
Q 5

2
− 12Q 1

2
� 1

2
+ 6�1 + 6�0q1

)/
6

F 9
2

= (
Q 9

2
− 40Q 5

2
� 1

2
+ 720Q 1

2
�2

1
2
− 240Q 1

2
�2 1

2
+ 120�3 + 120�2q1 − 480�1� 1

2
+ 60�1q

2
1

− 480�0�1Q 1
2
− 420�0� 1

2
q1 − 240�0�1 1

2
+ 20�0q

3
1 − 120�0q3

)/
20.

The Gk series.

G0 = θQ 1
2

G2 = (
3Q 1

2
Q 3

2
+ 6�0Q 1

2
+ θQ 5

2
− 12θQ 1

2
� 1

2
+ 6θ�1 + 6θ�0q1

)/
3

G4 = (−10Q 5
2
Q 3

2
+ 15Q 1

2
Q 7

2
+ 120Q 1

2
Q 3

2
� 1

2
− 5Q 1

2
Q 5

2
q1 − 120�2Q 1

2

− 60�1Q 3
2
− 60�0Q 3

2
q1 − 20�0Q 5

2
+ 420�0Q 1

2
� 1

2
+ 90�0Q 1

2
q2

1

− 120�0�1 − θQ 9
2

+ 40θQ 5
2
� 1

2
− 720θQ 1

2
�2

1
2

+ 240θQ 1
2
�2 1

2
− 120θ�3

− 120θ�2q1 + 480θ�1� 1
2
− 60θ�1q

2
1 + 480θ�0�1Q 1

2
+ 420θ�0� 1

2
q1

+ 240θ�0�1 1
2
− 20θ�0q

3
1 + 120θ�0q3

)/
90.

The Gk 1
2

series.

G− 1
2

= θ

G 3
2

= −Q 3
2

+ Q 1
2
q1 + 2�0 − 4θ� 1

2

G 7
2

= (
3Q 7

2
− 24Q 3

2
� 1

2
− Q 5

2
q1 + 6Q 1

2
� 1

2
q1 − 12Q 1

2
�1 1

2
+ 18Q 1

2
q3 − 24�2

− 12�1q1 + 84�0� 1
2

+ 6�0q
2
1 + 96θ�0�1 − 144θ�2

1
2

+ 48θ�2 1
2

)/
6.

Gradings. These generating functions have the following gradings and parities:
[F0] = 0 [F2] = 2 [F4] = 4 even[
F 1

2

] = 1
2

[
F 5

2

] = 5
2

[
F 9

2

] = 9
2 odd

[G0] = 0 [G2] = 2 [G4] = 4 even[
G− 1

2

] = − 1
2

[
G 3

2

] = 3
2

[
G 7

2

] = 7
2 odd.
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Note again that the generating functions Fα do not depend on θ , while Gα are linear
functions with respect to θ .

2.4. Nonlocal vectors

We consider now to the �∗-extension of equation (2). The additional coordinates on this
extension are denoted by P = P0, P 1

2
, P1 etc.

Now we introduce nonlocal variables in the �∗-extension that we call nonlocal vectors
and which are defined by(

PY1

)
θ

= Y1P0
(
PY3

)
θ

= Y3P0
(
PY5

)
θ

= Y5P0(
PY 3

2

)
θ

= Y 3
2
P0

(
PY 7

2

)
θ

= Y 7
2
P0

(
PY 11

2

)
θ

= Y 11
2
P0(

PZ1

)
θ

= Z1P0
(
PZ3

)
θ

= Z3P0
(
PZ5

)
θ

= Z5P0(
PZ 1

2

)
θ

= Z 1
2
P0

(
PZ 5

2

)
θ

= Z 5
2
P0

(
PZ 9

2

)
θ

= Z 9
2
P0

where the symmetries Yα and Zα were described in subsection 2.2.
The x- and t-components of these variables are given in [6].

Gradings. The variable P0 is even and we assign grading 0 to it. Then Pk are also even
variables with [Pk] = k, while Pk 1

2
are odd and

[
Pk 1

2

] = (2k + 1)/2. Consequently,[
PY1

] = 2
[
PY3

] = 4
[
PY5

] = 6 even[
PY 3

2

] = 5
2

[
PY 7

2

] = 9
2

[
PY 11

2

] = 13
2 odd[

PZ1

] = 2
[
PZ3

] = 4
[
PZ5

] = 6 even[
PZ 1

2

] = 3
2

[
PZ 5

2

] = 7
2

[
PZ 9

2

] = 11
2 odd.

2.5. Nonlocal forms

Passing to the �-extension of equation (2), we introduce the additional coordinates on this
extension that are denoted by � = �0,� 1

2
,�1, etc.

Now we introduce nonlocal variables in the �-extension called nonlocal forms and
described by (

�F0

)
θ

= �0F0
(
�F2

)
θ

= �0F2
(
�F4

)
θ

= �0F4(
�F 1

2

)
θ

= �0F 1
2

(
�F 5

2

)
θ

= �0F 5
2

(
�F 9

2

)
θ

= �0F 9
2(

�G0

)
θ

= �0G0
(
�G2

)
θ

= �0G2
(
�G4

)
θ

= �0G4(
�G− 1

2

)
θ

= �0G− 1
2

(
�G 3

2

)
θ

= �0G 3
2

(
�G 7

2

)
θ

= �0G 7
2

where the generating functions Fα and Gα were described in subsection 2.3.
The x- and t-components of these variables are given in [6].

Gradings. The variable �0 is even and we assign grading 0 to it. Then �k are also even
variables with [�k] = k, while �k 1

2
are odd and

[
�k 1

2

] = (2k + 1)/2. Consequently,[
�F0

] = − 1
2

[
�F2

] = 3
2

[
�F4

] = 7
2 odd[

�F 1
2

] = 0
[
�F 5

2

] = 2
[
�F 9

2

] = 4 even[
�G0

] = − 1
2

[
�G2

] = 3
2

[
�G4

] = 7
2 odd[

�G− 1
2

] = −1
[
�G 3

2

] = 1
[
�G 7

2

] = 3 even.
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2.6. Recursion operators for symmetries

Using the method described in subsection 1.5, we found two nontrivial solutions of the
linearized equation in the �-extension enriched with nonlocal variables. The first one is

R1 = −Q 1
2
�F0� 1

2
− 2�1�G0 − �1�F0 + 2�1Q 1

2
�G− 1

2

− 2�0� 1
2

+ θ�F0� 1
2
q1 − θ�F0�1 1

2
+ 2θ�1Q 1

2
�F0

+ 2θ�1�F 1
2

− �F 1
2
� 1

2
+ �G− 1

2
� 1

2
q1 − �G− 1

2
�1 1

2
− 2�0� 1

2
+ �2.

The operator corresponding to the first solution is

�R1 = D4
θ − 2�0Dθ − 2� 1

2

− (Y1 + Z1)D
−1
θ ◦ F0 − Z 1

2
D−1

θ ◦ F 1
2
− Y 3

2
D−1

θ ◦ G− 1
2
− 2Y1D

−1
θ ◦ G0.

This recursion operator coincides with the one found in [17]. The second solution is given in
[6] and corresponds to the operator �2

R1
.

Gradings. The operator R1 is even and its grading is 2.

2.7. Recursion operators for generating functions

Using the method described in subsection 1.6, we found three nontrivial solutions of the
adjoint linearized equation in the �∗-extension enriched with nonlocal variables. The first one
is

L1 = Q 1
2
PZ 1

2
+ 2�0P 1

2
+ θPY 3

2
+ 2θQ 1

2
PY1 − 4� 1

2
P0 + PY1 + PZ1 + P2.

The operator corresponding to the first solution is

�L1 = D4
θ + 2�0Dθ − 4� 1

2

+ (F0 + 2G0)D
−1
θ ◦ Y1 + G− 1

2
D−1

θ ◦ Y 3
2

+ F0D
−1
θ ◦ Z1 + F 1

2
D−1

θ ◦ Z 1
2
.

The second and third solutions are given in [6] and correspond to the operators �2
L1

and �3
L1

,
respectively.

Gradings. The operator L1 is even and its grading is 2.

2.8. Hamiltonian structures

Using the method described in subsection 1.7, we found three nontrivial solutions of the
linearized equation in the �∗-extension enriched with nonlocal variables. The first one is

K1 = P2 1
2
− P 1

2
� 1

2
− 2�1P0 − 3�0P1.

The operator corresponding to the first solution is

�K1 = D5
θ − 3�0D

2
θ − � 1

2
Dθ − 2�1.

This operator satisfies criteria (15) and (16) and thus is Hamiltonian. Moreover, there exists a
conservation law (corresponding to the nonlocal variable q3)

X = �0� 1
2

T = −2�1�2 + �0�3 − 9�0�1� 1
2

+ 4�3
1
2
− 2� 1

2
�2 1

2
+ �2

1 1
2

such that our equation can be represented as

�t = �K1

δ

δ�

(
−1

2
X

)
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and so (18) is also satisfied. This Hamiltonian structure is well known, see, e.g., [15] and
references therein.

The second Hamiltonian structure is of the form

K2 = −PZ 1
2
� 1

2
q1 + PZ 1

2
�1 1

2
− PY 3

2
� 1

2
+ P4 1

2
− 3P2 1

2
� 1

2
− 3P1 1

2
�1 1

2

+ 3P 1
2
�2

1
2
− P 1

2
�2 1

2
− 2Q 1

2
� 1

2
PY1 − 2�3P0 − 7�2P1 − 2�1Q 1

2
PZ 1

2

+ 9�1� 1
2
P0 − 2�1PZ1 − 9�1P2 − �0�1P 1

2
+ 13�0� 1

2
P1 + 7�0�1 1

2
P0

− 5�0P3 + 2θ�1PY 3
2

+ 4θ�1Q 1
2
PY1 + 2θ� 1

2
q1PY1 − 2θ�1 1

2
PY1 .

The corresponding operator is

�K2 = D9
θ − 5�0D

6
θ − 3� 1

2
D5

θ − 9�1D
4
θ − 3�1 1

2
D3

θ +
(
13�0� 1

2
− 7�2

)
D2

θ

+
(
3�2

1
2
− �2 1

2
− �0�1

)
Dθ +

(
9�1� 1

2
+ 7�0�1 1

2
− 2�3

)
+ Y 3

2
D−1

θ ◦ Z 1
2
− Z 1

2
D−1

θ ◦ Y 3
2
− 2Y1D

−1
θ ◦ Z1 − 2Z1D

−1
θ ◦ Y1.

The third solution is given in [6] (see also remark 9).

Gradings. The operator �K1 is odd and of grading 5/2. The operator �K2 is also odd and of
grading 9/2.

2.9. Symplectic structures

Using the method described in subsection 1.8, we found three nontrivial solutions of the
adjoint linearized equation in the �-extension enriched with nonlocal variables. The first one
is

J1 = �G0 + �F0 − Q 1
2
�G− 1

2
+ θQ 1

2
�F0 + θ�F 1

2
.

The operator corresponding to the first solution is

�J1 = (F0 + G0)D
−1
θ ◦ F0 + G− 1

2
D−1

θ ◦ F 1
2
− F 1

2
D−1

θ ◦ G− 1
2

+ F0D
−1
θ ◦ G0.

This operator can be shown to coincide with the known symplectic structure D−1
θ −D−1

x ◦�◦
D−1

x , see [17] and also [15] and references therein.
The second solution is of the form

J2 = (
3�G2 − 12�G0� 1

2
− 12�F2 − 12�F0� 1

2
+ 6�1 1

2
− 3Q 3

2
�F 1

2

−Q 5
2
�G− 1

2
+ 3Q 1

2
Q 3

2
�F0 + 3Q 1

2
�F 1

2
q1 + 12Q 1

2
�G− 1

2
� 1

2

− 3Q 1
2
�G 3

2
− 6�1�G− 1

2
+ 6�0Q 1

2
�F0 + 6�0�F 1

2
− 6�0�G− 1

2
q1

+ 6�0�0 + θQ 5
2
�F0 − 12θQ 1

2
�F2 − 12θQ 1

2
�F0� 1

2
+ 6θ�1�F0

+ 6θ�0�F0q1 − 12θ�F 1
2
� 1

2
+ 6θ�F 5

2

)/
6.

The corresponding symplectic structure is

�J2 = D3
θ + �0 +

(
1
2G2 − 2F2

)
D−1

θ ◦ F0

− 2(F0 + G0)D
−1
θ ◦ F2 + 1

2G 3
2
D−1

θ ◦ F 1
2

+ G− 1
2
D−1

θ ◦ F 5
2

− 2F2D
−1
θ ◦ G0 + 1

2F0D
−1
θ ◦ G2 − 6F 5

2
D−1

θ ◦ G− 1
2
− 1

2F 1
2
D−1

θ ◦ G 3
2
.

The third solution is given in [6] (see remark 9).

Gradings. The operator �J1 is odd and of grading −1/2. The second operator is also odd and
its grading equals 3/2.
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2.10. Interrelations

Using the symmetries computed in subsection 2.2 and applying the recursion operator obtained
in subsection 2.6, we get four infinite series of (generally, nonlocal) symmetries

Y2k−1 [Y2k−1] = (4k + 1)/2 odd

Y 4k−1
2

[
Y 4k−1

2

] = 2k + 1 even

Z2k−1 [Z2k−1] = (4k + 1)/2 odd

Z 4k−3
2

[
Z 4k−3

2

] = 2k even

k = 1, 2, . . . .

In a similar war, using the results of subsections 2.3 and 2.7, we get four infinite series of
generating functions

F2k−2 [F2k−2] = 2k − 2 even

F 4k−3
2

[
F 4k−3

2

] = (4k − 3)/2 odd

G2k [G2k] = 2k even

G 4k−5
2

[
G 4k−5

2

] = (4k − 5)/2 odd

k = 1, 2, . . . .

These series are related to each other (up to rational coefficients) by the operators of
subsections 2.6–2.9 in the following way:

Y2k−1
�R1 ��

�J1

��

Y2k+1

�J1

��
F2k−2

�L1

��

�K1

�����������
F2k

�L1

��
�K1

�����������
F2k+2

Z2k−1
�R1 ��

�J1

��

Z2k+1

�J1

��
G2k

�L1

��

�K1

����������
G2k+2

�L1

��
�K1

�����������
G2k+4

Y 4k−1
2

�R1 ��

�J1

��

Y 4k+3
2

�J1

��
F 4k−3

2 �L1

��

�K1

����������
F 4k+1

2 �L1

��
�K1

����������
F 4k+5

2

Z 4k−3
2

�R1 ��

�J1

��

Z 4k+1
2

�J1

��
G 4k−5

2 �L1

��

�K1

����������
G 4k−1

2 �L1

��
�K1

����������
G 4k+3

2

Remark 8. Actually, there exists another hierarchy of symmetries S2k , k = 0, 1, . . . , with the
seed element

S0 = 6
(−�3 + 3�1� 1

2
+ 3��1 1

2

)
t + 2�1x + θ� 1

2
+ 3�

(the scaling symmetry). All these symmetries are odd, linear with respect to x, t , and θ , and
have grading [S2k] = (4k + 3)/2, see [16] for the general properties of such hierarchies.

Remark 9 (cf [1]). Let us clarify the relations between the structures described above.
First, it should be noted that the Hamiltonian structures K1 and K2 are compatible, i.e. their
Schouten bracket vanishes (or, their linear combination is the Hamiltonian structure again).
Moreover, they are related to each other by the recursion operator R1: �K2 = �R1 ◦ �K1 .
Consequently, an infinite series of (nonlocal) compatible Hamiltonian structures Ki arises,
such that �Ki+1 = �R1 ◦ �Ki

. In a similar way, we have an infinite series of symplectic
structures related by the operator L1. In particular, �J2 = �L1 ◦ �J1 . The inverse of each
Hamiltonian structure, if it makes sense, is a symplectic structure and vice versa.
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Second, in an obvious way all natural powers of recursion operators are also recursion
operators. It is well known that if �R is a recursion operator for symmetries, then its adjoint
�∗

R is a recursion operator for generating functions, and vice versa. In particular, we have
�∗

R1
= �L1 .

3. Conclusion

The study of the N = 1 supersymmetric KdV equation exposed in this paper demonstrates
the power and efficiency of the geometrical methods elaborated in [2] and [7]. In particular,
we found recursion operators for symmetries and generating functions, Hamiltonian and
symplectic structures and constructed five infinite series of symmetries. The research was
based on new geometrical methods giving rise to efficient computational algorithms.

Our experience shows that the methods applied are of a universal nature and may be used
to analyse a lot of other equations, both classical and supersymmetric. In particular, from
technical point of view, the canonical representation of nonlocal operators (see subsection 1.9)
seems to be quite efficient and convenient when dealing with such operators. Note that all
nonlocal operators constructed in this paper are represented in the canonical form.

We strongly believe that the majority of the problems formulated in [15] can be solved by
our methods. We plan to demonstrate this in forthcoming publications.
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